skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Woralert, Chutitep"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In recent years, ransomware attacks have grown dramatically. New variants continually emerging make tracking and mitigating these threats increasingly difficult using traditional detection methods. As the landscape of ransomware evolves, there is a growing need for more advanced detection techniques. Neural networks have gained popularity as a method to enhance detection accuracy, by leveraging low-level hardware information such as hardware events as features for identifying ransomware attacks. In this paper, we investigated several state-of-the-art supervised learning models, including XGBoost, LightGBM, MLP, and CNN, which are specifically designed to handle time series data or image-based data for ransomware detection. We compared their detection accuracy, computational efficiency, and resource requirements for classification. Our findings indicate that particularly LightGBM, offer a strong balance of high detection accuracy, fast processing speed, and low memory usage, making them highly effective for ransomware detection tasks. 
    more » « less
    Free, publicly-accessible full text available November 2, 2025
  2. Free, publicly-accessible full text available November 2, 2025